Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur Thyroid J ; 11(6)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36228315

RESUMEN

At present, no European recommendations for the management of pediatric thyroid nodules and differentiated thyroid carcinoma (DTC) exist. Differences in clinical, molecular, and pathological characteristics between pediatric and adult DTC emphasize the need for specific recommendations for the pediatric population. An expert panel was instituted by the executive committee of the European Thyroid Association including an international community of experts from a variety of disciplines including pediatric and adult endocrinology, pathology, endocrine surgery, nuclear medicine, clinical genetics, and oncology. The 2015 American Thyroid Association Pediatric Guideline was used as framework for the present guideline. Areas of discordance were identified, and clinical questions were formulated. The expert panel members discussed the evidence and formulated recommendations based on the latest evidence and expert opinion. Children with a thyroid nodule or DTC require expert care in an experienced center. The present guideline provides guidance for healthcare professionals to make well-considered decisions together with patients and parents regarding diagnosis, treatment, and follow-up of pediatric thyroid nodules and DTC.

2.
Horm Res Paediatr ; 94(1-2): 76-80, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34126618

RESUMEN

INTRODUCTION: Neonatal screening programs for congenital hypothyroidism (CH) have been implemented worldwide to facilitate early diagnosis and treatment. The Dutch neonatal CH screening is primarily based on the measurement of thyroxine (T4). When T4 is low, an additional thyroxine-binding globulin (TBG) measurement is performed to reduce the number of false-positive screening results due to harmless TBG deficiency. Here, we present a case of a rare functional TBG deficiency leading to a false suspicion of CH. CASE PRESENTATION: Neonatal screening in this patient revealed a decreased T4, normal TSH, and normal TBG concentration, suggesting central CH. However, free T4 was normal. DNA sequencing analysis revealed a novel, hemizygous mutation (c.139G>A) in SERPINA7, the gene encoding TBG, resulting in the substitution of the conserved amino acid alanine to threonine at position 27. Crystal structure analyses showed that this substitution has a detrimental effect on binding of T4 to TBG. CONCLUSIONS: The novel SERPINA7 variant in this patient led to a false suspicion of central hypothyroidism in the Dutch T4-based neonatal screening program. It is important to recognize patients with such TBG defects to prevent unnecessary additional testing and treatment.


Asunto(s)
Hipotiroidismo Congénito/diagnóstico , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Mutación Missense , Globulina de Unión a Tiroxina/deficiencia , Globulina de Unión a Tiroxina/genética , Hipotiroidismo Congénito/genética , Errores Diagnósticos , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Recién Nacido , Masculino , Tamizaje Neonatal , Pruebas de Función de la Tiroides
3.
J Clin Endocrinol Metab ; 106(11): e4487-e4496, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34171085

RESUMEN

CONTEXT: Newborn screening (NBS) for classic congenital adrenal hyperplasia (CAH) consists of 17-hydroxyprogesterone (17-OHP) measurement with gestational age-adjusted cutoffs. A second heel puncture (HP) is performed in newborns with inconclusive results to reduce false positives. OBJECTIVE: We assessed the accuracy and turnaround time of the current CAH NBS algorithm in comparison with alternative algorithms by performing a second-tier 21-deoxycortisol (21-DF) pilot study. METHODS: Dried blood spots (DBS) of newborns with inconclusive and positive 17-OHP (immunoassay) first HP results were sent from regional NBS laboratories to the Amsterdam UMC Endocrine Laboratory. In 2017-2019, 21-DF concentrations were analyzed by LC-MS/MS in parallel with routine NBS. Diagnoses were confirmed by mutation analysis. RESULTS: A total of 328 DBS were analyzed; 37 newborns had confirmed classic CAH, 33 were false-positive and 258 were categorized as negative in the second HP following the current algorithm. With second-tier testing, all 37 confirmed CAH had elevated 21-DF, while all 33 false positives and 253/258 second-HP negatives had undetectable 21-DF. The elevated 21-DF of the other 5 newborns may be NBS false negatives or second-tier false positives. Adding the second-tier results to inconclusive first HPs reduced the number of false positives to 11 and prevented all 286 second HPs. Adding the second tier to both positive and inconclusive first HPs eliminated all false positives but delayed referral for 31 CAH patients (1-4 days). CONCLUSION: Application of the second-tier 21-DF measurement to inconclusive first HPs improved our CAH NBS by reducing false positives, abolishing the second HP, and thereby shortening referral time.


Asunto(s)
17-alfa-Hidroxiprogesterona/sangre , Hiperplasia Suprarrenal Congénita/diagnóstico , Cortodoxona/sangre , Tamizaje Neonatal/métodos , Proyectos Piloto , Hiperplasia Suprarrenal Congénita/sangre , Algoritmos , Reacciones Falso Positivas , Humanos , Recién Nacido , Países Bajos , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...